El ECI París 2017 será en el ESPCI, donde trabajaron 6 premios Nobel

École Supérieure de Physique et de Chimie Industrielles (ESPCI)
10 Rue Vauquelin, 75005 Paris
21 de julio 2017

El ESPCI y el prestigio que le dan sus 6 premios Nobel
Marie Curie, premio Nobel de Física en 1903 por el descubrimiento del radio.
Pierre Curie, premio Nobel en 1903 por el descubrimiento del radio.
Marie Curie, premio Nobel de química en 1911 por la purificación del radio con técnicas electroquímicas.
Frédéric Joliot-Curie, premio Nobel de química en 1935 por demostrar la radiactividad artificial.
Pierre-Gilles de Gennes, premio Nobel de física en 1911, por sus investigaciones sobre cristales líquidos y los polímeros, el Comité Nobel se refirió a Pierre-Gilles de Gennes como “el Newton de nuestros tiempos”.
Georges Charpak, premio Nobel de física en 1992 por sus detectores utilizados en física de partículas.

Free Registration:

Presenters (Deadline 15 jun 2017).

No presenters

Exposiciones confirmadas:

“Adding metabolomics to precision medicine”
Carlos Malpica Lizarzaburu
MLP Vision Biotech S.L., Spain

“La física de instrumentos pre-incas”
Víctor Coronel
City University of New York, United States

A personal knowledge base integrating user data and an activity timeline
David Montoya
INRIA / ENGIE, France

The path of quantum computers towards quantum supremacy
Enrique Solano
University of the Basque Country, Bilbao, Spain

Monte Carlo entropic sampling applied to Ising-like model for 2D Spin Crossover nanoparticles: re-entrance phase transition
Jorge LINARES

Université Paris-Saclay / Université de Versailles St. Quentin en Yvelines

Abstracts and CVs

“Adding metabolomics to precision medicine”
Carlos Malpica Lizarzaburu
00000000carlosmalpica
MLP Vision Biotech S.L., Spain

Abstract
Precision medicine is an emerging approach for disease treatment and prevention that takes into account each person’s individual variability in genes, environment and lifestyle. Today, the ability of Metabolon’s technology to impact human health is more compelling than ever as the promise of precision medicine rapidly becomes a reality.
Metabolomics improves our understanding of health and the influences of diet, drug treatment, genes and lifestyle. While genomics often reveals only predisposition or risk of disease, Metabolon provides a snapshot of the current state of health and actionable information to advance clinical decision-making and research.

Carlos Malpica CV

  • Carlos Malpica Lizarzaburu was trained in France as an Agronomic Engineer at Institut National Agronomique Paris-Grignon and Pasteur Institute and obtained his PhD. in Biotechnology from Paris University 7. Additionally he holds a diploma from the Spanish Diplomatic School and an International Executive MBA from Instituto de Empresa (Spain).
  • Dr. Malpica is the CEO of MLP Vision Biotech S.L. and is actively involved in promoting the adoption of metabolomics technologies in the European Research Area as European Director of Metabolon Inc. (USA). He is also the Vice-President of BioEuroLatina, a non-for-profit organization that aims at fostering the collaboration between Europe and Latin America in Biotechnology.
  • Past activities include Marketing and Sales Director at Biopolis S.L. (Spain), Research Director at L’Oréal Group (France), CEO of Kina Biotech S.L. (Spain), Global Business Development Manager at Syngenta A.G. (Switzerland), Head of Business Development Europe at Novartis Seeds S.A.S. (France) and Biotechnology Research Coordinator at the DANONE Group (France).

“La física de instrumentos pre-incas”
Víctor Coronel
000victorcoronel
City University of New York, United States

  • Profesor de Física a Tiempo Parcial, Departamento de Ciencias Naturales, Baruch College, City University of New York, CUNY, Nueva York, NY 10010. Sep 89 – Presente
  • Profesor Principal, Física e Ingeniería, Departamento de Ciencias, SUNY Rockland, Suffern, Nueva York, NY 10901. Sep 91 – Presente.
  • Profesor Visitante, INICTEL (Instituto Nacional de Investigaciones y Capacitación de Telecomunicaciones), Lima, PERU. Curso de cuatro semanas sobre “Aplicaciones Industriales del Procesamiento Digital de Señales”, Jul – Ago 2000.
  • Profesor en Cursos de Verano, Departamento de Física, Ramapo College, Ramapo, Nueva Jersey, EE.UU. Veranos 1998, 1999.
  • Investigador y Co-Director. Laboratorio de Imágenes Digitales, Departamento de Ciencias Naturales, Baruch College, Nueva York, Sep 90 – Mayo 98.
  • Experto Técnico para la Agencia Internacional de Energía Atómica en el Instituto Peruano de Energía Nuclear: Bioseñales y Aplicación de Computadoras en Medicina, Lima PERU, Julio – Agosto 1996. Ultrasonido y Procesamiento de Imágenes Medicas, Enero 1996.
  • Co- Investigador Principal, Proyecto para la Fundación Nacional de Ciencias (NSF, EE.UU.) en “Desarrollo de Experimentos en Acústica y Ondas para el Laboratorio, Usando Computadoras y Tarjetas de Adquicision de Datos” Sep 91 – Nov 93.
  • Profesor Visitante, Laboratorio de Señales y Procesamiento de Imágenes, Penn State University, University Park, PA, EE.UU. Jun 93 – Ago 93.
  • Profesor Asistente, Acústica y Procesamiento de Señales, Departamento de Ingeniería Eléctrica, Manhattan College, Bronx, NY. EE.UU. Sep 84 – May 90.
  • Consultor Técnico en Medidas Magnéticas, Independent Testing Laboratories, Nueva York, NY, EE.UU. Oct 86 – Feb 87.
  • Profesor Asistente, Departamento de Física, Manhattan College, Bronx, NY Sep 83 – May 84.
  • Profesor de Física y Director de Investigación y Desarrollo, Escuela Superior Técnica del Ejercito, Lima PERU, May 74 – Ago 78.

EDUCACION

  • Doctorado (PhD), en Ciencia de Materiales, Columbia University, Nueva York, NY, EE.UU. May 83.
  • Maestría en Ciencia de Materiales, Columbia University, May 80.
  • Maestría en Física, Columbia University, Mayo 74.
  • Bachillerato en Física, Haverford College, Haverford PA, EE.UU. May 71.
  • Diploma de Escuela Secundaria, G.U.E. José Granda, Lima PERU, Dic.


A personal knowledge base integrating user data and an activity timeline
David Montoya
00000davidmontoya
INRIA / ENGIE, France

Abstract

Typical Internet users today have their data scattered over several devices, applications and services. Managing and controlling one’s data is increasingly difficult. In this thesis, we adopt the viewpoint that the user should be given the means to gather and integrate her data, under her full control. In that direction, we designed a system that integrates and enriches the data of a user from multiple heterogeneous sources of personal information into an RDF knowledge base. The system is open-source and implements a novel extensible framework that facilitates the integration of new data sources and the development of new modules for deriving knowledge. We first show how user activity can be inferred from mobile phone sensor data. We introduce a time-based clustering algorithm to extract stay points from location history data. Using data from additional mobile phone sensors, as well as geographic information from OpenStreetMap and public transportation schedules, we introduce a transportation mode recognition algorithm to derive the different modes and routes taken by the user when travelling. The algorithm derives the sequence of maximum probability in a conditional random field with a neural network layer. We also show how the system can integrate data from email, calendars, address books, social network services, and location history into a coherent whole. To do so, it uses entity resolution to find the set of avatars used by each real-world contact, and performs spatiotemporal alignment to connect each stay point with the event it corresponds to in the user’s calendar. Finally, we show that such a system can also be used for synchronization across different systems and devices and allow knowledge to be pushed to the sources. We present extensive experiments.

David Montoya CV

  • Ph.D. Candidate, INRIA / ENGIE
  • M.Sc. Computer Science, 2012, École Normale Supérieure de Cachan
  • B.Sc. in Computer Science, 2009, École Normale Supérieure de Cachan
  • His research interests include personal knowledge bases, personal analytics, and activity recognition.

Publications

  • David Montoya, Thomas Pellissier Tanon, Serge Abiteboul, Fabian Suchanek: Thymeflow, A Personal Knowledge Base with Spatio-temporal Data, In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM’16), October 2016.
  • David Montoya, Serge Abiteboul, Pierre Senellart, Hup-Me: Inferring and Reconciling a Timeline of User Activity with Smartphone and Personal Data,  November, 2015.
  • David Montoya, Serge Abiteboul: Inférence d’itinéraires multimodaux à partir de données smartphone, In Actes de la 30ème Conférence sur la Gestion de Données – Principes, Technologies et Applications (BDA’14), October, 2014

The path of quantum computers towards quantum supremacy
Enrique Solano
enrique-solano
University of the Basque Country, Bilbao, Spain

  • Ikerbasque Professor  (Peruvian and Spanish)
  • PhD in Physics from the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
  • Prof. Solano has worked in academic and research institutions in Peru, France, Brazil, Germany, Australia, and USA.
  • Research line: Quantum technologies, quantum information, quantum optics, superconducting circuits, and quantum biomimetics.
  • Prof. Solano has joined the Department of Physical Chemistry at the University of the Basque Country, Bilbao, Spain.
  • www.qutisgroup.com

Monte Carlo entropic sampling applied to Ising-like model for 2D Spin Crossover nanoparticles: re-entrance phase transition
jorgelinares
Jorge LINARES

Université Paris-Saclay / Université de Versailles St. Quentin en Yvelines

We present first in a detailed way the Monte Carlo entropic sampling (MCES) for an Ising model and then we explain how to apply to an Ising-like model for 2D Spin crossover nano-particles in order to show the role of the edge molecules of the system with their local environment. We show that for this 2D spin crossover (SCO) systems, one of the origin of multi steps transition is the effect of the edge interaction molecules with its local environment together with short and long range interactions. By increasing the value of the edge interaction, L, the transition is shifted to the lower temperatures: it means that the role of edge interaction is equivalent to an applied negative pressure because the edge interaction favours the High-Spin (HS) state while the applied pressure favours the Low-Spin (LS) state. And finally we also analyse the role of the short- and long-range interaction, J respectively G, with respect to the environment interaction, L, and the origin of the re-entrance thermal hysteresis.
References:
1. J. Linares, C. Jureschi, K. Boukheddaden, ” Surface effects leading to unusual size dependence of the thermal hysteresis behavior in spin-crossover nanoparticles”, Magnetochemistry, 2016 2,24
2. D. Chiruta, J. Linares, P. Dahoo, M. Dimian, «Analysis of long-range interaction effects on phase transitions in two-step spin crossover chains by using Ising type systems and Monte Carlo entropic sampling technique”, Journal of Applied Physics, 12, 074906 (2012).
3. I. Shteto, J. Linares, F. Varret, « Monte Carlo entropic sampling for the study of metastable states and relaxation paths », Physical Review E 56 (1997) 5128-5137

“Cómo el  Quipu Inca registró la información”
Carmen González
0000carmengonzalez

Doctora en Física (USM de Grenoble, Francia)
Actualmente, Investigadora en “Culturas andinas prehispánicas: sistemas de numeración, quipu y yupana, y computo del tiempo”

Resumen
El quipu, que alcanzó su más alta perfección y mayor difusión durante el periodo Inca (1400-1532 AD), fue un artefacto a base de cuerdas y de nudos en el cual se registró informaciones que pueden ser clasificadas en dos grandes grupos: numéricas y no numéricas. En los quipus numéricos se utilizó el sistema decimal de posición et se inscribieron datos administrativos y de contabilidad del estado Inca: censos de población, cantidad de productos almacenados en los depósitos oficiales (colca/qolqa), repartición de tributos, etc. Los quipus no numéricos son aquellos que no muestran una distribución decimal en la organización de los nudos y probablemente contienen informaciones narrativas como lo sugieren algunos cronistas, pero que por el momento no sabemos leerlos. Los quipus numéricos, que son los más estudiados, en particular en los últimos 20-30 años, pueden ser vistos como registros oficiales del imperio Inca y así, se convierten en una fuente histórica “de origen inca” que permitirá comprender la organización y los modos de funcionamiento del imperio del Tawantinsuyu. En esta charla presentaré los últimos avances hechos en la lectura e interpretación de los quipus incaicos y terminaré indicando algunos ejes de investigación futura y proponiendo una bibliografía.

Actividad profesional
2014-2017 Integrada al programa de investigacion CNRS-plurianual: “Conter le temps compté”, (Fédération CNRS Typologie et Universaux Linguistiques – France).
2002-2010 Investigadora en “Alcatel-Thales III-VLab” (Laboratorio de Investigación de Alcatel-Lucent y Thales).
1983-2001 Investigadora en el “Centre National d’Etudes de Télécommunication” (Laboratorio de Investigación de France Telecom)
1977-1981 Enseñante en el Departamento de Física de la Universidad de Grenoble (USMG)
Educación
1981 Docteur ès-Sciences, Université de Grenoble (USMG)
1975 Docteur 3er Cycle, Spectroscopie, Université de Grenoble (USMG)

1971 Bachiller en Física, Universidad Nacional de Ingeniería, Lima, Peru

1959 Diploma de Escuela Secundaria, G.U.E. General Prado, Callao, Peru

 

 

Complex Transmission Aplied to Line Analysis Theory
000000Pablo_Vidal-Garcia

Pablo Vidal García, Emilio Gago Ribas
Escuela Politécnica de Ingeniería, 33203-Gijón, Asturias, España

The Transmission Line Theory (TLT) has demonstrated its usefulness describing the propagation of guided waves in different mediums and also in the analysis of RF circuits, particularly in the lossless case, [1]. When arbitrary losses are taken into account, the usual TLT often reduces the analysis of the TL parameters by means of approximations, such as the low losses approximation, or by simply taking the lossless values of those parameters under study, avoiding the rigorous analysis of arbitrary losses.
To avoid such lacks and limitations and to generalize the analysis of lossy TLs, the Complex Transmission Line Analysis (CTLA), [2], arises when the analysis in the complex variable, caused by the time harmonic regime, is brought to the TLT. This analysis offers the facilities inherent to the complex variable: complex theorems, transformations and mappings in complex planes related to the characteristic complex parameters in the TLT. In addition, the normalizations of the TL parameters, the parameterized curves based on losses in the graphical representations and their geometrical analysis, lead to (i) important non trivial physical interpretations and (ii) useful tools in the analysis of lossy TLs –e.g. the Generalized Smith Chart (GSC), [3], and its logarithmic version (log-GSC), [4]–. These assertions can be proved by means of some examples of use including the important problem of the analysis of the reflection coefficient at the load in terms of losses, [5], and its extension along the TL, [6].
In this paper, the basis and main results of the CTLA are summarized, as well as some new analysis are introduced underlying the previous ones. In particular, those dealing with frequency dependent basic parameters of the TL are being carried out, and in this sense the preliminary results are presented here. These analyses will be especially useful in the characterization, design and circuit manufacture with materials which present lossy variable behaviors within the wide bandwidth of operation, such as graphite or graphene.

Keywords: Complex Transmission Line Theory, lossy transmission lines, complex variable analysis, lossy frequency analysis

References

[1] R. E. Collin, Foundations for Microwave Engineering, McGraw-Hill International Editions, 1992.
[2] E. Gago-Ribas, Complex Transmission Line Analysis Handbook, Vol. GW-I, “Electromagnetics & Signal Theory Notebooks” series. GR-Editores, León, Spain, 2001.
[3] E. Gago-Ribas, C. Dehesa Martínez, and M.J. González Morales, “Complex Analysis of the Lossy-
Transmission Line Theory: A Generalized Smith Chart”, Turkish Journal of Electrical Engineering
& Computer Sciences (Elektrik), Turkey. Vol. 14, No. 1, pp. 173-194, 2006.
[4] P. Vidal-García and E. Gago-Ribas, “A Logarithmic Version of the Complex Generalized Smith Chart”, Progress In Electromagnetic Research Letters, 2017 (to be published).
[5] E. Gago-Ribas, P. Vidal-García, and J. Heredia-Juesas, “Complex Analysis and Parameterization of the Lossy Transmission Line Theory and its Application to Solve Related Physical Problems”, in Proceedings of the International Conference on Electromagnetics in Advanced Applications, Torino, Italy, pp. 141-144, 2015.
[6] P. Vidal-García and E. Gago-Ribas, “Complex Analysis of the Transmission Line Theory: Analytical Characterization and Examples of Use”, in Proceedings of the Progress In Electromagnetic Research Symposium, Shanghai, China, pp. 3262-3266, 2016.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s